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Abstract—Keystroke timing attacks have long been recognized
as a serious security concern. Researchers have conjectured
that an attacker who learns the amount of time that elapses be-
tween keystrokes on a computer keyboard can reconstruct the
keys pressed by a victim typist. Given the severe implications
of a successful keystroke timing attack, numerous published
side-channel works have utilized keystroke timing extraction
as a case study to illustrate the impact of various types of
side-channel attacks. However, despite an abundance of works
demonstrating extraction of inter-keystroke timings, it remains
to be proven that input recovery is actually possible.

This paper bridges this long-standing gap in the literature
and performs a comprehensive study on the feasibility of
reconstructing typed input from inter-keystroke timings. We
model input reconstruction as a machine translation task and
fine-tune open-source Large Language Models (LLMs) with a
curriculum learning strategy, leveraging their ability to utilize
contextual information and incorporate semantic understand-
ing into the reconstruction process. With this approach, we
reconstruct typed input with a high degree of fidelity. Using
the best reconstruction among the Top-5 predictions and a
normalized edit distance threshold of 0.1 as the criterion for
successful reconstruction, we achieve a success rate of 34.9%.

We also demonstrate input reconstruction under practical,
real-world circumstances, where additional noise is introduced
to the inter-keystroke timing traces. We conduct end-to-end
cache attacks, both from native environments and from the
Chrome browser, and quantify how the additional noise in-
herent to cache attacks affects the input recovery process.
To obtain a sufficiently large dataset for training and fine-
tuning the LLM for noisy traces extracted via cache-attacks,
we replayed over 1.5 million typing samples from real hu-
man typists while performing cache attacks. We release and
open-source this dataset, along with our code and checkpoint
for reconstructing input, so that future works on keystroke-
timing attacks can rigorously and empirically evaluate their
effectiveness.

1. Introduction

Inter-keystroke timing intervals have long been theorized
to leak sensitive information. Song et al.’s [1] seminal paper
demonstrated that an attacker who can observe only the
timing of when a user’s keystrokes occurred can glean some
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limited information about what that user typed. They found
that the underlying source of this information leakage stems
from how the time elapsed between a pair of keystrokes,
called the inter-keystroke timings, follows different distri-
butions depending on the pair of keys. They hypothesized
that these timing differences in inter-keystroke timings could
potentially allow an adversary to fully reconstruct the vic-
tim’s original input sequence.

Following studies examined this temporal side-channel
and demonstrated inter-keystroke timings extraction through
various physical side-channels [2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17]. Moreover, various works demon-
strated remote software [18, 19, 20, 21, 22, 23, 24, 25, 26,
27] and micro-architectural [28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]
side-channels capable of recovering inter-keystroke timings
information without the requirement for any physical inter-
action between the victim and attacker.

Despite a multitude of academic papers utilizing the
extraction of inter-keystroke timing to demonstrate the im-
pact of their side-channel attacks, their suggestions that
such leaked information leads to input reconstruction remain
unsubstantiated, and the exact security implications of leak-
ing inter-keystroke timings remain unclear. That is, while
each of these studies demonstrates the extraction of inter-
keystroke timings with their side-channel attack, no study
hitherto has actually recovered a victim’s input keystrokes
from extracted inter-keystroke timings. Thus, it remains an
open problem whether input reconstruction is possible, even
from perfectly recovered inter-keystroke timings much less
with additional noise inherent to side-channel attacks.

Without a rigorous treatment of the security implications
of leaked inter-keystroke timings, system designers can-
not accurately assess the risks of exposing inter-keystroke
timings, thereby hindering attempts to conduct a security-
performance tradeoff analysis. Furthermore, side-channel
researchers cannot determine whether a proposed side-
channel attack can truly extract inter-keystroke timings with
sufficient fidelity for input reconstruction. Our work aims
to address this gap by rigorously quantifying the security
implications of leaking inter-keystroke timings. We guide
our exploration by posing the following questions:

o What are the security implications of leaked inter-
keystroke timings? To what extent can attackers use them
to reconstruct what the user was typing?

o What effect does additional noise, inherent to side-channel
attacks, have on the reconstruction of the victim’s input



keystrokes?

1.1. Contributions

In this paper, we provide answers to both questions,

backed by large-scale empirical studies and end-to-end at-
tacks. We demonstrate that leaked inter-keystroke timings
are sufficient for reconstructing the victim’s input to a far
greater degree than previously shown. By leveraging the
power of Large Language Models (LLMs), we can recover
a considerable amount of the input, confirming the severity
of keystroke timing attacks. We even showcase that our
techniques can successfully reconstruct the input from inter-
keystroke timings obtained from side-channel attacks with
inherently noisy traces.
An LLM Driven Approach for Reconstruction. Prior
work approached the task of input reconstruction from inter-
keystroke timings through the use of statistical methods
such as Hidden Markov Models and n-grams, or even
deep learning methods such as recurrent neural networks
(RNNs) or Long-term Short-term networks (LSTMs). In
this work, however, we observe that LLMs offer superior
capabilities for reconstruction due to their ability to consider
long-distance dependencies between tokens and exploit the
underlying context of the input (constrained by the grammar
and semantics of the English language). We leverage this
observation to model the problem of reconstructing input
from inter-keystroke timings as a machine translation task,
where the inter-keystroke timings form a special language
that we aim to translate back into English.

By fine-tuning state of the art LLMs on an enormous
dataset [51] (136 million sentence samples labeled with
inter-keystroke timings), we can reconstruct 34.9% of sen-
tences with near perfect fidelity (an edit-distance below 0.1)
when considering the top-5 outputs from the model, with the
performance dropping to 21.1% when considering only the
top-1 result, concretely demonstrating for the first time that
input reconstruction from inter-keystroke timings is indeed
feasible and a legitimate concern.

However, the high fidelity achieved on clean data does
not guarantee success in practical scenarios, where timing
intervals are extracted via noisy side-channel attacks. To
bridge this gap and adapt our model for real-world con-
ditions, we introduce a curriculum learning strategy. This
training paradigm involves a two-stage, easy-to-hard pro-
cess: the model is first trained on clean, ground-truth timing
intervals to learn the fundamental patterns of human typing,
and subsequently fine-tuned on the noisier data extracted
from our cache attacks. This structured approach proved es-
sential for handling real-world data distortions. Our ablation
study shows this strategy is significantly more effective than
training on noisy data alone, with the curriculum-trained
model being over four times more accurate than the cache-
only model in the most challenging setting.

Input Reconstruction from Side-Channel Traces. We
also examine the feasibility of input reconstruction under
more practical, real-world scenarios where inter-keystroke
timings are recovered with considerable noise present in the

trace. We focus on the case study of cache side-channels,

as they have been studied extensively in their relationship

to keystroke-timing attacks and offer powerful capabilities,
allowing attackers to extract inter-keystroke timings from
any victim that visits an attacker-controlled web page.

The added noise inherent to side-channels, however,

introduces major hurdles to carrying out input reconstruction
compared to the idealized case. To overcome this additional
noise, we fine-tuned our LLM on inter-keystroke timings
obtained via a Prime+Probe cache attack, and achieved
reconstruction of 17% of sentences with an edit-distance
below 0.1. This demonstrates, for the first time, that inter-
keystroke timings obtained from cache attacks in standard
threat models (both from native environments and from
JavaScript code running within a web browser) are sufficient
for reconstructing the victim’s input.
Cache-Traces Dataset. To train our LLM on cache traces,
we required a massive dataset of inter-keystroke timings
extracted via Prime+Probe attacks. Since no such public
dataset existed, we developed a dataset collection system to
generate our own. Our system replays typing samples from
large existing public datasets and simultaneously conducts
Prime+Probe attacks to produce traces for training the LLM.
In our experiments, we replayed over 1.5 million sentences
from over 168,000 volunteer typists [51], thereby accurately
simulating a large-scale collection of cache-attack traces on
real-world typing behavior.
Open Sourced Tools and Data.  We provide both our
tools for training LLMs on inter-keystroke timings and our
tools for reconstructing input from inter-keystroke timings as
open source code. This will enable side-channel researchers
to train and evaluate our models against inter-keystroke
timings traces obtained from various types of side-channels,
which may exhibit different noise patterns. We envision
that future studies demonstrating side-channels that extract
inter-keystroke timings will use our tool to empirically
demonstrate input reconstruction from their attacks, rather
than merely speculating that the traces they obtain through
their side-channels are sufficient. We also make public our
dataset of inter-keystroke timings of 1.5 million sentences
obtained through Prime+probe attacks so as to facilitate
future research on algorithms for input reconstruction.

Summary of Contributions. In this paper, we make the

following contributions:

o« We empirically demonstrate, for the first time, com-
plete reconstruction of a victim typist’s input from inter-
keystroke timings.

o We demonstrate the first reconstruction of user input from
inter-keystroke timings obtained through cache-attacks,
both from a native environment and from JavaScript code
running within a browser in section 4.

o« We build a dataset collection system that replays typ-
ing datasets while simultaneously obtaining side-channel
traces. We utilize this system to generate a large-
scale dataset of inter-keystroke timings extracted through
Prime+Probe attacks. We make this dataset public to
facilitate subsequent research on algorithms for input
reconstruction.



« We open-source a tool for side-channel researchers to
empirically evaluate the extent to which input can be
reconstructed from their keystroke timing attacks. This
tool provides a benchmark with which future side-channel
attacks can be evaluated.

1.2. Related Work

In 2001, Song et al. [1] pioneered inter-keystroke timings

extraction and inference attacks. They eavesdropped on SSH
packets to infer inter-keystroke timings intervals, and from
these intervals inferred keystrokes using timing deviations
derived from the keyboard’s spatial layout. The attack, how-
ever, used limited statistical methods for input reconstruction
and only considered pairs of keystrokes individually. Thus,
they lacked an analysis to recover texts fully.
Keystroke Reconstruction.  Early efforts in keystroke
reconstruction laid the groundwork for understanding the
potential affects of leaking timing information. Monaco
[52] introduced KREEP, a multi-stage pipeline employing
techniques like DFA-based packet detection and a neural
network (incorporating RNN5s) to reconstruct search queries
from encrypted network traffic by exploiting autocomplete
features on a dataset of replayed human typing; however,
this approach assumed the input consisted solely of alpha-
betic characters and spaces, and its reconstruction capabili-
ties were primarily benchmarked against a random baseline,
which might not fully capture the nuances of more sophis-
ticated reconstruction challenges. Moreover, KREEP per-
formed classification from a dictionary of potential queries,
whereas we perform input reconstruction. The problem is
much more difficult given the wider range of input combi-
nations in the natural English language. Moreover, they also
made use of a number of additional features, while we focus
solely on inter-keystroke timings.

Similarly, Gonzalez et al. [53] explored the classification
of different texts chosen from a small, predefined dictionary
of candidate texts. They utilized finite context modeling and
SVM classifiers, which resulted in a notable decline in the
model’s performance without user-specific training data.

More recently, Weiss et al. [54] pioneered the use of fine-
tuned T5 LLMs to infer Al assistant responses from a side
channel that exposes the token lengths of the encrypted re-
sponses. While they demonstrated the value of inter-sentence
context, their study did not explore the use of larger-scale
LLMs, potentially limiting the full exploitation of the pre-
trained knowledge inherent in such models, and they did not
examine recovering input from inter-keystroke timings.

The broader landscape of inferring typed text from
keystroke timings has seen various methodological ap-
proaches. Initial attacks, such as those targeting SSH by
Song et al. [1], often employed Hidden Markov Models
and Viterbi decoding for password recovery from packet
inter-arrival times. Subsequent research explored classical
machine learning classifiers, such as K-NN, for identifying
URLs from JavaScript interrupt timings [28], and more
advanced neural networks for reconstructing search queries
from packet characteristics [52]. Beyond network traffic,

keystroke timings have also been inferred from diverse side
channels, including acoustics [9, 10], seismic activity [12],
and hand motion [11]. Some research focuses on detect-
ing specific keywords rather than reconstructing the full
input [53]. More recently, deep learning applications on
side-channel analysis have become prominent for pattern
classification in noisy signals. Previous work uses generative
Al to enhance training datasets for these models [55].
Inter-Keystroke Timing Extraction. Numerous stud-
ies have demonstrated using side-channels to extract inter-
keystroke timings. These studies primarily focus on the
mechanism of inter-keystroke timings extraction, rather than
the problem of input reconstruction. Zhang and Wang [18]
profiled binary executables for stack pointers patterns to ex-
tract inter-keystroke timings, while Jana and Shmatikov [19]
presented an extraction attack using scheduling statistics.
Diao et al. [35] showed a side-channel attack by reading
the /proc/interrupts counters, and Lipp et al. [28]
extracted keystrokes using the browser interrupt timing.
However, these attacks have been mitigated by limiting
access to lower-level statistics and the inherent noise from
modern browsers. In our work, we utilize cache side channel
attacks, which are currently still unmitigated, to extract
keystrokes from both the native and browser environments.

Gruss et al. [29] conducted a keystroke timing attack by
templating each cache line in 1ibgdk with Flush+Reload.
However, Flush+Reload inherently relies on shared memory
and the cache flush instruction, which limits its applicability.
Keydrown [30], on the other hand, presented many variants
of interrupt timing and side-channel attacks for keystroke ex-
traction. Specifically, Multi-Prime+Probe monitors multiple
lines for keystroke signals to retrieve more reliable signals.
We adapt the technique of Multi-Prime+Probe, as presented
in Keydrown [30], to extract inter-keystroke timings.

1.3. Open Sourced Materials.

We open-sourced our artifact!, including the simulation
framework, reconstruction pipeline using fine-tuned LLM
model, and the dataset of cache traces. We hope this resource
will be a useful baseline for future research in developing
attacks and robust defenses for keystroke inference attacks.

2. Background

In this section, we discuss relevant background to Large
Language Models (LLM) and cache side-channels.

2.1. Large Language Models

Large language models (LLMs) are a class of massive-
scale neural network models with billions of parameters
[56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68]. They are
trained on an enormous amount of texts and possess strong
adaptation capability on diverse generation and understand-
ing tasks [67, 68, 69, 70].

1. https://zenodo.org/records/17254163



LLM Architectures. The majority of LLMs adopt the
Transformer architecture [71, 72], which allows LLMs to ac-
curately capture the information correlation between words
in sentences. The architecture of LLMs can be divided
into the encoder-decoder architecture (e.g. TS [73]) and
decoder-only architecture (e.g. GPT [62, 63, 64, 65, 66],
LLaMA [56, 57, 58] and OLMo [74]). The encoder-decoder
architecture allows one word in the sentence to correlate
with all the other words in the sentence. In contrast, the
decoder-only architecture only allows a word to correlate
with the words that appear before it in the sentence. While
the former enables more complex information processing,
the latter has proven to be more effective in natural lan-
guage understanding and generation, and is the mainstream
architecture for the most recent LLMs.

LLM Fine-Tuning. Fine-tuning refers to training an LLM
on a task that was not covered in its training stages before
[75, 76, 77]. Fine-tuning equips the LLM with the capability
to handle new tasks, e.g., text classification [78, 79] and
mathematical reasoning [75, 80, 81]. In this work, we fine-
tune the LLMs so that they can understand inter-keystroke
timings intervals and decipher the textual input.

2.2. Caches

A CPU’s cache is a small bank of fast memory placed
close to the processor to hide the long memory access
latencies incurred with accessing main memory. To further
improve performance, caches are divided into multiple lay-
ers with small but fast local caches located close to each
core and a Last Level Cache (LLC) that is shared across
all cores. Shared caches improve overall performance and
minimize the memory footprint through memory sharing.

2.3. Cache Side-Channel Attacks

Cache side-channel attacks exploit the timing difference
between memory accesses served from the cache and those
from main memory. The attacker, based on the locality of
the data and understanding of the victim’s execution context,
can infer a victim’s memory access patterns by observing the
cache state. Previous studies have used cache timing side-
channels to break cryptographic implementations [29, 32,
36, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], establish
covert channels for transient execution attacks [94, 95, 96,
97, 98, 99, 100, 101, 102, 103], and monitor user activity
[28, 29, 30]. In this paper, we focus on Flush+Reload [82]
and Prime+Probe [83, 93].

Flush+Reload [82]. The Flush+Reload attack relies on
shared memory between the attacker and victim, typi-
cally mapping a shared library or leveraging memory de-
duplication. To determine whether the victim has accessed
a cache line, the attacker flushes the cache line from all
cache levels using the clflush instruction, forcing the
next access to fetch from the main memory. The attacker
then waits for a fixed number of cycles before reaccessing
the same memory address and measuring the access time. A
fast access time implies that the victim accessed the target

address, causing it to be brought back into the cache. Whileh
this attack yields accurate access information at the cache
line granularity, it requires shared memory, which is often
limited in security-critical environments such as browsers
and clouds.

Prime+Probe [83]. Prime+Probe lifts the shared memory
requirement in Flush+Reload, making it suitable for both the
native environment [83] and the browser [104]. In a general
LLC Prime+Probe attack, the attacker first constructs a
minimal eviction set [105] that occupies the target cache set.
To “prime” the cache, the attacker fills the target cache set
by repeatedly accessing the eviction set. After an optional
idle period, the attacker “probes” the cache by re-accessing
the eviction set and measuring each access time to detect
evictions caused by the victim’s activity. As noted by Purnal
et al. [84], the idle period is not strictly necessary since
the probe phase is both preserving (retaining cache state)
and concurrent (detecting simultaneous accesses). In this
paper, we adopted a non-windowed Prime+Probe for both
the native environment and on the browser.

3. Large Language Models for Input Recon-
struction from Time Intervals

Reconstructing textual input from a sequence of inter-
keystroke timings is a fundamentally challenging task due
to significant variations in typing habits and the inherent
ambiguity of the raw numerical data. To address this, we
model the problem as a machine translation task, leveraging
the advanced contextual understanding of Large Language
Models (LLMs). Unlike previous methods, LLMs can utilize
their vast, pre-trained knowledge of grammar and semantics
to disambiguate noisy timing signals, making them uniquely
suited for this high-fidelity reconstruction task.

However, off-the-shelf LLMs are not inherently capable
of solving this specialized problem and require significant
adaptation. We therefore employ a two-stage fine-tuning
process guided by a curriculum learning strategy. The
model is first trained on clean, ground-truth timing intervals
to learn the fundamental patterns of keystroke dynamics.
Subsequently, it is fine-tuned on noisier data extracted from
real-world cache side-channel attacks, a process that equips
the model with the robustness needed for practical scenarios.
Finally, to account for the model’s stochastic nature, we
generate multiple candidate outputs for each input and select
the most confident prediction for our evaluation.

3.1. Problem Formulation

The primary objective of this research is to recon-
struct the original character sequence, denoted as C' =
[c1,ca,...,cm], from a sequence of inter-keystroke timing
intervals, T = [t1,to,...,t,—1]. Each interval ¢; represents
the elapsed time between the i-th and (i + 1)-th key presses.
It is important to note that in our setting, users may input
control key sequences (e.g., Shift, Backspace, Delete), and
thus the lengths of the timing sequence n and the character
sequence m are not necessarily equal.



To illustrate the reconstruction challenge, consider the
sentence “The monitor showed a ga_ in the data,” where
_ represents a missing character. An LLM can leverage
grammatical context to eliminate syntactically implausible
options. In this instance, both ‘p’ and ‘s’ could form a
grammatically correct sentence (i.e., “gap” or “gas”). The
LLM can then further disambiguate by analyzing the in-
tervals between keystrokes. For example, the keys in the
pair (‘a’, ‘p’) are typically further apart on a standard
QWERTY keyboard than ‘a’ and ‘s’. Consequently, their
inter-keystroke intervals are likely to differ, allowing the
model to make a more informed inference regarding the
character the user typed.

This input reconstruction task is inherently challenging
due to significant inter-individual variations in typing habits.
For instance, some users may be experienced typists with
consistently short inter-keystroke intervals, while less expe-
rienced typists may exhibit much longer and more variable
intervals. The “136M Keystrokes” [51] dataset reveals sub-
stantial differences: the average inter-key interval (IKI) is
238.656 ms (SD = 111.6 ms), but for fast typists, the average
IKI can be around 120 ms (SD = 11 ms), whereas slow
typists can have IKIs exceeding 480 ms, sometimes reaching
900 ms (SD > 120 ms). Beyond keyboard layout and in-
dividual proficiency, numerous other factors influence inter-
keystroke intervals, including cognitive pauses for thought
and external environmental distractions. These complexities
significantly increase the difficulty of accurately reconstruct-
ing user input from timing data alone.

To address these challenges, we employ a combination
of two primary strategies: @ Inference with Modern Large
Language Models (LLMs): We leverage the capabilities
of state-of-the-art language models. By fine-tuning a pre-
trained LLM specifically for our task, we can capitalize
on the common linguistic structures and patterns prevalent
in the English language to reduce sentence entropy. Unlike
previous works that relied on Markovian models or simpler
recurrent architectures to exploit similar side-channel infor-
mation, LLMs are more adept at this task due to their supe-
rior ability to consider long-distance dependencies between
tokens and incorporate broader contextual understanding. @
Large-Scale, Diverse Datasets: our models are trained on
extensive keystroke interval datasets, primarily derived from
the “136M Keystrokes Dataset” [51]. This dataset encom-
passes a vast number of keystroke timings from a diverse
user population, capturing a broad spectrum of typing habits
and environmental factors. This comprehensive training data
enables our model to learn a wide range of input patterns.

Furthermore, we demonstrate that our LLM-driven ap-
proach can also reconstruct input from inter-keystroke tim-
ings obtained through side-channel attacks, which introduce
noise compared to the ground-truth IKIs. To help the model
better understand the distributional shifts introduced by
cache side-channel extraction, we have generated a new data
set by replaying 1.5 million past test samples from [51]
while extracting their respective inter-keystroke timings by
conducting cache side-channel attacks.

3.2. Large Language Models Based Reconstruction

Motivation.  Large language models have been trained
on extensive corpora, enabling them to infer user input
not only from keystroke intervals but also at the seman-
tic level by leveraging contextual information [106, 107].
Compared to previous keylogging methods that utilized
RNNs, LSTMs [108], or statistical models such as Support
Vector Machine [53], LLMs offer a significant advantage
due to their ability to incorporate semantic understanding
into the reconstruction process. This makes them particularly
suitable for tasks requiring nuanced predictions, such as
reconstructing user input from noisy or incomplete data.
Model Architecture. We model the problem of re-
constructing input from keystroke intervals as a machine
translation task. Transformer architectures, which underpin
most modern LLMs, are designed to process large-scale
datasets effectively, making them ideal for leveraging the
extensive keystroke interval datasets collected from typing
websites and other sources [51]. By pre-training on these
datasets, the model can uncover intricate relationships be-
tween keystroke interval patterns and user input, enhancing
the generalizability of our attack.

Machine translation tasks involve converting one lan-
guage into another, and we treat keystroke interval se-
quences as a unique language where numerical intervals
represent “words.” The task then becomes translating this
“language” into English text. Deep learning has achieved
remarkable success in machine translation, with large-scale
pre-trained LLMs such as GPT-4 demonstrating state-of-
the-art performance [65]. Consequently, we employ two
popular open-sourced LLM architectures, TS and LLaMA,
to perform this translation task [58, 109].

Both types of LLMs can derive a hidden state from
the input and include a language model head as the final
output layer. The input keystroke intervals, after passing
through the Transformer layers, produce a hidden state
that is then fed into the final output layer to generate the
reconstructed user input. The complete generation process is
performed autoregressively, generating one token at a time
and appending it to the input sequence.

Vocabulary Expansion. Previous research has indicated
that directly prompting LLMs with numerical sequences can
lead to inaccurate results [55]. Some studies have expanded
the original token vocabulary of LLMs to fine-tune their
weights, adding new tokens such as _5 and _9 to replace
original numerical tokens, thereby avoiding the influence
of the original semantics of these numerical tokens and
achieving efficient training. However, in our tests, we found
that expanding the vocabulary on large decoder-only models,
such as LLaMA, did not yield better performance, possibly
due to differences arising from the model size. Therefore,
our final model does not use an expanded vocabulary.

Training. During the training phase, sequences of inter-
keystroke time intervals are provided as input to the model,
which subsequently generates corresponding character se-
quences as output. We employ a cross-entropy loss function
to quantify the discrepancy between the model’s predicted



output and the actual user input, and we update the model’s
parameters iteratively using the backpropagation algorithm.
Throughout this process, we utilize a batch gradient descent
methodology to enhance training efficiency and stability.
Furthermore, we adopt an instruction tuning approach to
fine-tune the model. An illustrative example of such a
training prompt is presented below:

LLM, Training Prompt

User: Translate the Time intervals to Keystrokes.

Time intervals: 516 222 165 294 141 159 144 162 75 123
81 639 105 87 774 84 90 183 498 111 102 93 399 78 645
144 459

Assistant: Lynn, got to the office OK.

In addition to supervised fine-tuning, we also evalu-

ate the model’s performance under few-shot and zero-shot
learning paradigms. The few-shot learning paradigm will
prepend extra examples to the context, allowing the LLM to
learn from previous conversations. The “136M Keystrokes
Dataset” [51] contains instances where individual users have
provided typing data for multiple separate sentences. This
characteristic allows us to construct training and evaluation
scenarios where a few example sentences (i.e., shots) from
a specific user are provided as context. We then assess
the model’s ability to leverage these examples to infer
user-specific typing habits and, consequently, generate more
accurate reconstructions.
Inference. In the inference phase, given a sequence of
inter-keystroke time intervals, we employ the beam search
algorithm to generate multiple candidate reconstructions.
Beam search is a heuristic search algorithm that explores
the most promising paths in a limited breadth-first manner
by maintaining a fixed number of top candidate sequences
(the “beam”) at each step of the generation process. This
approach balances the thoroughness of an exhaustive search
with computational feasibility by pruning less likely se-
quences early. The confidence of each generated candidate
sentence is subsequently assessed using its negative log-
likelihood, computed by the LLM, and then utilized to
rank the candidates. We conducted a comparative analysis
between the outputs generated via beam search and those
produced by other prevalent sampling techniques. Our ob-
servations indicate that beam search typically yields a more
diverse set of candidate reconstructions and exhibits a higher
probability of including the correct reconstruction among
its top candidates, particularly as the number of considered
samples (i.e. number of returned sequences) increases.

Curriculum Learning. We introduce curriculum learn-
ing, a training paradigm inspired by human cognition, in
which a model is sequentially trained on data of increasing
difficulty[110, 111]. The approach improves model gener-
alization and robustness across similar problems of varying
difficulties. Our input reconstruction problem naturally lends
itself to this strategy, as our datasets correspond to two
distinct levels of difficulty. The initial, simpler curriculum
utilizes ground-truth inter-keystroke intervals, enabling the

model first to learn the fundamental patterns of human
typing dynamics. The subsequent, more challenging cur-
riculum consists of timing intervals extracted via cache side-
channel attacks, which are subject to considerable noise and
distortion inherent to the extraction process. By adopting
this two-stage training strategy, we enable the model to
build a strong foundational understanding of clean data
before learning to handle the complexities of real-world,
noisy traces, ultimately yielding a final model with superior
performance in practical attack scenarios.

3.3. Evaluation

Dataset & Training. The “136M Keystrokes Dataset” [51]
is a large-scale, publicly available resource for the scientific
study of modern typing behaviors. It comprises over 136
million keystrokes collected from 168, 960 self-selected vol-
unteers who participated in an online transcription typing
test. For the study, participants were asked to input 15
sentences each. The dataset contains detailed keystroke-
level data, including timestamps for key-down and key-up
events, as well as participant-provided demographic infor-
mation such as age, gender, and typing experience. This
extensive collection of data includes detailed statistical anal-
yses of keystroking patterns, performance metrics such as
Words Per Minute (WPM), and nuanced behaviors, includ-
ing rollover typing, providing a comprehensive resource for
understanding contemporary typing performance.

We utilized 90% of the samples for training and parti-
tioned the validation set into four types based on whether the
user and sentence appeared in the training set. We utilized
NVIDIA H100 GPUs to train the models for reconstructing
user input. Each model takes approximately a day to train.
Metrics. We evaluate the fidelity of input reconstruction
using two primary metrics derived from character-level nor-
malized edit distance. This normalized edit distance, denoted
d, between a ground truth string S, and a reconstructed
string Sy, is calculated as the Levenshtein distance be-
tween their uppercase versions, divided by the length of the
uppercase ground truth string. Formally:

(Strue)a U(ST’EC))
|U(Strue)|

where Dy (-, ) represents the Levenshtein distance, U(-) is
a function that converts a string to its uppercase equivalent,
and | - | denotes the length of the string. We deem a
reconstruction successful if this normalized edit distance
(9) to the ground truth text is less than 0.1, a threshold
adopted from [55]. Reconstruction Accuracy is the per-
centage of such successful reconstructions. Recognizing the
stochastic nature of Large Language Model (LLM) out-
puts and the inherent difficulty of achieving optimal Top-
1 reconstruction, our evaluation considers both the single
highest-ranked prediction (Top-1) and the best-performing
prediction within the top 5 candidates (Top-5). Specifically,
we report: @ Reconstruction Accuracy (Top-1 and Top-
5): The percentage of reconstructions where the normalized
edit distance (9) to the ground truth is less than 0.1. This is

D
5(Strue7srec) = L(U



reported for the Top-1 prediction and for the scenario where
at least one of the Top-5 predictions meets this criterion.
® Mean Edit Distance (MED) (Top-1 and Top-5): The
average normalized edit distance. This is reported for the
Top-1 prediction and for the best prediction (i.e., lowest 4)
found within the Top-5 candidates. To further illustrate the
reconstruction quality at different levels of normalized edit
distance, we provide several representative examples in the
range of 0.0 to 0.2. As shown below, these cases demonstrate
both near-perfect and partially deviated reconstructions.

Representative Reconstruction Examples

Edit distance ~ 0.06
Input: Hope that all is well in Denver.
Prediction: Hope that all is well in Denver

Edit distance ~ 0.07

Input: Crestone won’t have final measurement until
this week.

Prediction: crestone won’t have final measurement
until next week.

Edit distance ~ 0.08
Input: Taka has to be completed.
Prediction: Task has to be completed.

Edit distance ~ 0.17

Input: Let Gary Smith know if you want him.
Prediction: Let Gary Smith know today if you want
him.

J

Experiments. Our experiments are designed with two main
objectives. First, we evaluated the ability of our model to
reconstruct user input from inter-keystroke timings intervals.
We initially assess using the keystroke intervals provided by
the 136M dataset [51], focusing on the model’s performance
across sequences of varying lengths and different validation
set partitions. Next, we evaluated the model’s ability to
reconstruct user input from inter-keystroke timings intervals
extracted through cache attacks from both the native envi-
ronment and the browser. Last, we analyzed the impact of
different model training strategies.

Initial Validation Experiments. To validate our proposed
LLM-based methodology, we conduct two initial experi-
ments. First, we evaluate the performance of pre-trained
LLMs without any task-specific adaptation to understand
whether fine-tuning is required. Second, we assess our fine-
tuned model on clean, ground-truth keystroke intervals to
obtain the performance upper bound of the reconstruction.
These initial results, presented in Table 1, serve as cru-
cial benchmarks before we evaluate the model’s robustness
against noisy, side-channel-extracted data in later sections.

3.3.1. Performance of Pre-trained Models without Fine-
tuning. We first evaluate the capabilities of pre-trained
large language models without any task-specific fine-tuning.
As a qualitative case study, we prompted several models

to translate a sequence of keystroke intervals into text.
The summarized responses from a general-purpose model
(OLMo 1B) and two inference-focused models (Qwen3 8B
and DeepSeek R1) are presented in section A.

The performance of these models without fine-tuning is
exceedingly poor. General-purpose models like OLMo 1B
completely misunderstand the task’s premise, attempting to
establish arbitrary, irrelevant conversion rules. Meanwhile,
more advanced inference-focused models like Qwen 3 8B
and DeepSeek R1 correctly identify the nature of the prob-
lem—that the numbers represent time intervals between
keystrokes—but are unable to proceed to a solution. They
tend to engage in circular reasoning about the need for a
non-existent mapping or context, sometimes exhausting the
context window in the process. These qualitative failures
clearly demonstrate that pre-trained models lack the spe-
cialized knowledge to translate timing patterns into text,
underscoring the importance of fine-tuning.

3.3.2. Comparison to Hidden Markov Models. To provide
more perspective on the advantages of using LLMs over
more traditional statistical methods, we also compare our
result against Hidden Markov Models (HMMs), as they are
what [1] used to classify passwords in their seminal study.
Due to their inability to utilize contextual information in
the way that LLMs can, the results are exceedingly poor
and they completely fail to reconstruct the input, as shown
in Table 1.

As the results clearly indicate, the HMM-based approach
is entirely ineffective for this task, achieving a reconstruction
accuracy of 0.00% across all validation splits. The mean
edit distance is consistently close to 1.0, signifying that
the generated outputs bear almost no resemblance to the
ground truth sentences. A qualitative analysis of the HMM’s
output reveals a strong tendency to fall into repetitive pat-
terns, generating nonsensical sequences such as The the
the the The t or 17501750. We found that this issue
persists even when employing countermeasures like beam
search or applying repetition penalties during inference.
This complete failure underscores the severe limitations of
traditional statistical models for a task that requires nuanced
contextual and semantic understanding. It reinforces the
necessity of our LLM-based approach, which can leverage
its vast linguistic knowledge to overcome the ambiguities
inherent in timing data.

3.3.3. Performance on Ground Truth Time Intervals. We
then evaluate the performance of our fine-tuned model on
ground truth time intervals, and compare it against KREEP
as a baseline. While there is no direct comparison to our
work, as we are the first to perform input reconstruction,
which is a more difficult task than what KREEP attempts,
KREEP is the closest related work that attempts to match
input to inter-keystroke timings in some capacity. Table 1
summarizes the results across various evaluation metrics,
using a normalized edit distance of less than 0.1 as the
criterion for successful reconstruction.



TABLE 1. RECONSTRUCTION PERFORMANCE ON GROUND TRUTH TIME INTERVALS

Model Top-1 Recon. Acc. T Top-5 Recon. Acc. T Top-1 Mean Edit Dist. || Top-5 Mean Edit Dist. |
HMM [1] 0.00% 0.00% 0.9837 0.9837
KREEP [52] 0.10% 0.20% 0.7008 0.6607
T5 (Ours) [73] 16.84% 33.53% 0.6677 0.4881
OLMo 1B (Ours) 21.09% 34.92% 0.6454 0.4896

Our fine-tuned OLMo 1B model demonstrates a sub-
stantial improvement over the KREEP baseline and outper-
forms the T5 model on nearly all key metrics. Notably, our
model achieves a Top-1 reconstruction accuracy of 21.09%
and a Top-5 accuracy of 34.92%. This high success rate,
particularly in the Top-5 setting where nearly 35% of sen-
tences are correctly reconstructed, concretely demonstrates
the effectiveness of our approach. While the Top-5 mean
edit distance of our model (0.4896) is comparable to that
of TS5 (0.4881), our model shows a clear advantage in
Top-1 performance across both accuracy and mean edit
distance. Furthermore, Figure 1 illustrates the Probability
Density Function (PDF) of the normalized edit distance
for the best samples generated by KREEP and our OLMo
model. The distribution for our OLMo model is notably
bimodal. It features a tall, sharp peak centered precisely at
a normalized edit distance of zero, corresponding to near-
perfect reconstructions. A second, broader peak is centered
around an edit distance of approximately 0.75, representing
typical unsuccessful attempts. This bimodal shape is highly
advantageous for an attacker. The clear separation between
the “success” peak at zero and the “failure” peak allows an
attacker to confidently distinguish high-fidelity reconstruc-
tions from a majority of the incorrect ones, providing a clear
signal of a successful attack. In practice, this confidence
is derived from the observation that top candidates for a
successful reconstruction exhibit high semantic consistency,
whereas those for a failed attempt are semantically diverse.
In contrast, the distribution for KREEP is unimodal and
centered around 0.7, with virtually no density near zero.
This lack of a distinct success peak means an attacker
using KREEP has no reliable way to determine if a given
reconstruction is accurate, and only a tiny percentage of
sentences are recovered correctly.

4. Keystroke Extraction Case Studies

In the previous section, we demonstrated that our model
can make highly accurate inferences based on precise inter-
keystroke timings. However, when it comes to extracting
inter-keystroke timings through remote side-channels, some
amount of noise is introduced into the measurements. In
these scenarios, for the attack to be effective, the LLM needs
to be able to reconstruct input from noisy side-channel traces
with distorted intervals.

Over the past decades, researchers have shown that
accurate keystroke timing can be extracted through a va-
riety of side-channel attacks [1, 18, 28, 29, 30, 35, 38].
Among them, cache side channel attacks stand out as being
particularly pernicious due to the ease and scale at which
they can be conducted remotely via software. They are
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Figure 1. Probability Density Function (PDF) of the normalized edit
distance for reconstructions from KREEP and our OLMo 1B model. Our
model’s distribution is heavily concentrated near zero, indicating frequent
high-fidelity reconstructions, while KREEP’s distribution is more spread
out.

well-studied and widely deployed in research as founda-
tional building blocks for many more sophisticated exploits
[94, 95, 96, 97, 98, 99, 100, 112, 113]. Many proposals for
novel cache side-channel attacks [29] use keystroke extrac-
tion as a canonical example to demonstrate the effectiveness
of the attack; however, these attacks did not attempt to make
inferences or reconstruct the input using their extractions.

In this section, we reproduce the Multi-Prime+Probe
attack in Keydrown [30] and extend it to a weaker threat
model in a sandbox browser environment. The browser
threat model enables an attacker-controlled website to spy on
keystrokes entered into any application on multiple victim
devices simultaneously under limited sandboxed capabili-
ties. We further extend these approaches to build a simula-
tion system that synchronizes with a mass replay interface
to collect and store side-channel traces at scale.

4.1. Test Setup

We conducted our tests on several Intel Core 17-2600
(Sandy Bridge) systems running Ubuntu 24.04 LTS (Noble)
with kernel version 6.11.0-25-generic, BIOS version A24,
and microcode update 0x2f. Following prior work [83, 93],
hardware stream prefetchers are utilized to minimize noise
and we enable transparent huge pages (THP) to accelerate
the search for eviction sets. We also assume knowledge
about the physical address of the function, as a plethora
of studies [114, 115, 116, 117, 118, 119, 120] have demon-
strated techniques to break Kernel Address Space Layout
Randomization (KASLR). Using the physical address, we
computed the set and slice index and performed a classical
Prime+Probe attack [83, 93]. We later generalize the attack
to account for architectures with unknown slice functions.



4.2. Identifying Potential Targets

We begin our investigation into generic keystroke timing
attacks by identifying potential targets of interest for a cache
attack. These “targets” are cache lines that correspond to
the sections of code where the attacker wants to monitor.
Two criteria for good targets are the activation frequency
and the selectivity of the activation. That is, good targets
are cache lines that are activated many times if and only if
the keystroke handling routine is currently being executed.
These targets are sparse across different user libraries and
within the kernel, with structures ranging from functions and
variables to memory buffers. Through monitoring accesses
to these targets using Flush+Reload or Prime+Probe, we can
infer the occurrence of keystrokes and thereby retrieve the
inter-keystroke intervals.

4.3. Kernel Keystroke Handling Functions

Prior template attacks [29, 30] are limited to applications
that both link and use the libraries for input handling.
In addition, the detections are often limited to keystrokes
entered into a targeted application. To implement a broader
attack that captures all keystrokes entered on the device, the
target must be invoked on every keystroke regardless of the
input application. Therefore, we target the kernel’s keystroke
interrupt handler because all keystrokes are processed here
first before getting forwarded to their destination application.

To identify kernel targets, we implemented a Kker-
nel module that functions simultaneously as a keylog-
ger and as a Flush+Reload profiler for specific kernel
addresses. We profiled interrupt handling functions from
/proc/kallsyms and compared its cache traces against
the ground truth. Out of all the functions we tested, we
observed close correlation between keystroke times and
activations of kbd_keycode and kbd_event and we
will use them as our targets for the rest of this paper. The
kernel module was only used for exploring effective targets,
and is thus not required to perform the subsequent attacks.

4.4. Native Prime+Probe

Using the information from profiling the kernel and
input-processing libraries, we implemented non-windowed
Prime+Probe [84] to monitor the two kernel functions,
kbd_keycode and kbd_event, to build generic attacks
that can monitor any keystrokes entered to the same system.

The Attack. We first found eviction sets for all slices
of our target using the group-testing algorithm [105]. To
determine the specific slice the kernel function resides in,
we perform Prime+Probe on all discovered eviction sets
while generating keystroke events. The correct eviction set
can then be identified by observing the timing trace with
keystroke-aligned activity. We observe that the index of the
kernel’s eviction set remains consistent across multiple runs.

Noise Filtering. Prime+Probe is more susceptible to noise
than Flush+Reload, as the latter operates at the granularity
of cache lines, as opposed to cache sets. Thus, if we em-
ploy the same binary labeling scheme, marking all possible
keystrokes as one and others as zero, we observe keystrokes
at nearly every time unit, making the signal unreadable.

Therefore, we leverage two significant observations from
[51] and propose an aggregation-based approach. First,
we recognize that, despite Prime+Probe iterations having
a lower temporal resolution than Flush+Reload, operating
at a few hundred nanoseconds granularity, they are still
significantly faster than human keystrokes, which are often
issued at millisecond granularity [51]. This includes press-
ing the key, holding the key, releasing the key, and the
inter-keystroke timings. Thus, we are still able to make at
least hundreds of Prime+Probe measurements per keystroke
while accounting for system latencies, context switches, etc.
Second, we recognize that kbd_keycode was repeatedly
called throughout the keyhold time, resulting in repeated
cache hits observed during our Flush+Reload experiments.
As a result, repeated measurements during the keyhold time
should yield consistent hits, resulting in a spike during
that period. Therefore, our aggregated approach creates a
time series by computing the sum of cache hits at each
millisecond. The resulting trace amplifies the signals of
actual keystrokes from the background noise of the system.
We then obtain the keystroke intervals through a two-stage
filter consisting of a threshold filter and a frequency filter.

The threshold filter will first identify all milliseconds
that exhibit a high activity count greater than the threshold.
The threshold could be a static value based on the device’s
overall activity trace or dynamically determined for each
trace. The dynamic threshold is obtained by selecting the
top N X keys values in the aggregated counts, where NV is
a constant and keys is the number of keystrokes within the
given trace. The approach adjusts to sudden changes in the
system activity and ensures that a “reasonable” number of
candidates are selected for filtering for each trace. Although
the dynamic threshold requires prior knowledge of the num-
ber of keystrokes in advance, it can be estimated if the user’s
previous typing data is available. In the later experiments,
we use the adjusted dynamic threshold to demonstrate the
theoretical upper bound of cache trace quality and inference
results using LLMs. On the other hand, the frequency filter
sets a minimum inter-keystroke time and groups activations
within the range into a single keystroke, constructing our
final observed keystroke intervals.

Figure 2 shows an excerpt of the static filtering of
keystrokes from a test sample with a threshold of 40 hits
per millisecond and a minimum inter-keystroke interval of
60 ms, since Dhakal et al. [S1]’s dataset effectively contains
no inter-keystroke timings below 90 ms.

Storage. A key challenge in our implementation lies in
effectively storing the large volume of data generated by
the Prime+Probe attack. Even monitoring for only a few
seconds, the attack produces a new measurement every few
thousand CPU cycles, quickly accumulating a substantial
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Figure 2. Keystroke Filtering from Aggregated Traces

amount of data. To address this, we attempted two meth-
ods: storing each bit and storing each hit timestamp. In
the native environment, we store accurate timestamps from
rdtsc into a binary file. This method is memory-efficient
when measuring infrequent events such as keystrokes. In
the browser, without access to reliable CPU frequency-level
timers, we store each measurement in a bit of a large byte
array and shift to utilize all available memory bandwidth.
This compact encoding allows us to store and process long
traces efficiently without sacrificing temporal resolution.

4.5. Browser Prime+Probe.

From Native Prime+Probe, we extend the attack to the
browser, similar to Oren et al. [104]. We assume the attacker
controls a malicious webpage and the victim opens this
webpage in a browser tab. We do not assume the victim’s
activity or whether the victim interacts with the tab.

The browser tab automatically runs Javascript code that
executes on the victim’s machine within the browser’s
sandbox. From within the sandbox, the attacker conducts
a Prime+Probe attack that extracts inter-keystroke tim-
ings from cache traces. The attacker also observes all the
keystrokes entered on the device. This attack is more power-
ful than its native counterpart because it only requires a user
to access the malicious webpage via a browser. In addition,
the attack has the potential to continue monitoring keystroke
timings even when it is running solely in the background.

Test Setup. Browser Prime+Probe is performed on
identical setups outlined in Section 4.1. We performed our
experiments on an unmodified Chrome browser version
136.0.7103.113, the newest version at the time of writing.

Challenges in the Browser. Implementing the attack in
the browser introduces additional challenges due to lim-
ited visibility into the underlying memory layout. To over-
come these challenges, we adapt techniques from previous

work to implement a counting thread for high-resolution
timers and construct reliable eviction sets in JavaScript via
SharedArrayBuffer [105].

However, unlike native environments where congruent
addresses can be obtained using hugepage-aligned memory
mappings, modern browsers abstract the low-level memory
allocation details. We conducted several experiments to un-
derstand how large shared memory buffers were allocated
under different scenarios.

Understanding Normal Allocation Behavior. First, we
investigate whether browser allocations of large buffers are
page-aligned and whether the same memory layout is reused
across runs in the same tab. We began by identifying an ad-
dress in the SharedArrayBuffer and assumed it was aligned
to a 4KB boundary. We then constructed eviction sets on
native for all LLC sets that shares the same page offset and
tried to evict the target by probing each set repeatedly. We
observe that the target is always evicted by one of the sets
we build, strongly suggesting that the allocation of large
SharedArrayBuffer is in fact page-aligned. However, the
victim’s set varies between different runs. We hypothesize
that the browser deallocates upon inactivity and reallocates
on-demand, causing a change to the physical address and
thereby the LLC set due to address translation.

Understanding Allocation Behavior with THP.  Next,
we evaluated how enabling THPs could affect alloca-
tion behavior. We first identify a target index. Assuming
that SharedArrayBuffer is mapped contiguously on
hugepages and remains page-aligned, we can extract the set
index bits analogously to the native environment. Specifi-
cally, since the first element is mapped to offset 0x00000
and each element is 8 bytes, we can determine the set index
for any position in the SharedArrayBuffer. Under this
assumption, the same index in the SharedArrayBuffer
should consistently map to the same set across reallocations,
similarly to hugepages in the native environment. Our exper-
iments showed that Chrome consistently made THP-aligned
allocations that made the cache index consistent across runs.

Attack Implementation. Once the sets are consistent,
we perform the same attack described in Section 4.4. We
build our attack based off Spookjs [121] which provided
a modularized implementation of group-testing Vila et al.
[105]. We perform Prime+Probe on both kernel targets
and profiled sets from the cache template attack, and all
monitored sets show clearly observable keystroke spikes.

Results and Observations We observe consistent spike
patterns across all sets, with some variance in activity levels.
Interestingly, we extended the experiment to monitoring
arbitrary sets and slices and found that we could clearly
identify keystroke spikes from the overwhelming majority of
LLC sets. We believe this observation stems from the aggre-
gation that soothed out the noise and amplifies the additional
activity during keystroke handling. It raises questions about
the need to find specific targets for keystroke extraction and
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introduces numerous possibilities to construct more generic
and agnostic attack patterns in the future.

5. Keystroke Dataset Collection System

Although we demonstrated that inter-keystroke timings
from cache traces could be used to identify keystrokes, due
to the inherent noise from side channels, directly making
inferences using the original model without fine-tuning on
traces obtained via cache side-channels harms its perfor-
mance. However, one of the major challenges of fine-tuning
and training machine learning models is the need for a large
amount of data for training, validation, and testing. For the
trained model to generalize well to the entire population,
the training data must include a diverse range of sentence
structures while capturing variations in human typing pat-
terns, such as speed, rhythm, errors, and correction behavior.
Unfortunately, even though similar samples on actual typing
intervals [51] have been collected, such datasets do not
exist for cache side-channel traces. In addition, generating
extensive and comprehensive data sets would require a large-
scale field experiment similar to [S1] that is extremely time-
consuming to organize.

We bridged this gap by building a large-scale replay
framework that can generate a massive number of realis-
tic cache activity traces. It accomplishes this by replaying
typing samples from existing datasets [51] while simulta-
neously conducting cache attacks to recover cache activity
traces. In our experiments, we replayed over 1.5 million
sentences typed by 168,000 volunteers [51] and obtained a
comprehensive dataset of cache traces aligned with realistic
typing behavior. Unlike previous studies [52], we do not
limit our test to alpha-numeric keystrokes, but instead cap-
ture all characters used in actual scenarios, including special
characters and functional keys (DELETE, BACKSPACE,
SHIFT, CTRL, CAPS_LOCK, etc.).

To the best of our knowledge, this is the first effort
towards a large scale, realistic cache side-channel trace
collection.

5.1. System Workflow

Figure 3 shows a simplified version of the simula-
tion system. The framework consists of two main compo-
nents: the simulation process (light green), which replays
keystrokes, and the measurement process (yellow), which
executes the Prime+Probe attack and retrieves traces. Their
executions can be divided into three phases: the preparation

phase (blue), the simulation phase (pink), and the synchro-
nization phase (dark green).

We abstracted much of the underlying synchronization
logic for clarity in the diagram. For full implementation
details, please refer to our released artifact.

Preparation Phase. In the preparation phase, the simulation
process and the measurement process perform the necessary
setup before starting the simulation. The simulation process
processes the simulation parameters and reads from the
typing trace file to obtain the characters and inter-keystroke
intervals of the test sample. In parallel, the measuring
thread would find eviction sets using techniques discussed
in Section 4.4. Once both processes have completed their
respective setups, we enter the simulation phase.

Simulating Process. In this phase, the simulation process
replays keystrokes, while the measurement process performs
Prime+Probe to record cache activity traces. Although the
two processes operate ‘“‘simultaneously”, we ensure that
the measuring process always starts before the simulating
process to avoid missing any keystrokes. In each simulation
phase, we simulate a single test sample at a time.

Synchronization Phase. After each simulation run, the two
processes synchronize to determine whether to proceed with
the next sentence or terminate. This phase uses a three-way
handshake protocol to coordinate the transition.

5.2. Native Simulation

At the beginning of the measuring method, the measur-
ing thread creates a shared memory space before it starts to
find suitable eviction sets. The simulation process begins
after the measuring thread and links to the same shared
memory. The two processes communicated via the first five
bytes in the memory. As the simulation terminates, the
simulating thread unlinks itself from the shared memory and
sends the done signal. The measuring thread then unmaps
the shared memory.

5.3. Web Simulation

In the browser setup, the measuring process becomes a
malicious tab hosted by the attacker. Unlike native simu-
lation, the browser tab cannot establish a shared memory
region with the simulating thread for synchronization with
a lack of low-level controls in a sandboxed environment.
Therefore, we introduce an intermidiary layer through the
server. The server stores the synchronization variables as
global state. The simulating thread and measuring thread
will synchronize using the same protocol, but they will
instead obtain or modify the states via Rest API calls.

An interesting observation in browser simulation is pe-
riods of inactivity in the browser, showing as “dips” in
Figure 4. We believe this is likely caused by the browser’s
optimization or other resource-saving behaviors.
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5.4. Replay Results

We replayed all 1.5 million samples at 3x speed on the
native environment for two weeks on four machines with
identical setup. Our evaluation confirms that the simulation
traces from both the native and web environments success-
fully capture all keystroke spikes. However, when applying
various levels of filtering, we observe a trade-off between
false positives and false negatives.

Following approaches detailed in Section 4.4, we ap-
ply a dynamic filter and a minimum inter-keystroke time
of 60 ms. Since the LLM make inferences based on the
obtained key intervals, our evaluation focuses on the quality
of intervals we extract from the traces. To account for
noise and detection errors that cause interval shifting, we
evaluate our results using Dynamic Time Warping (DTW)
distance, which aligns sequences under non-linear distor-
tions. A lower DTW distance indicates a better alignment
between the extracted and ground-truth intervals. Figure 5
shows a boxplot illustrating the distribution of samples for
each context under each environment.

The plots show that filtered predictions from the web
environment are consistently worse than those from the
native environment, primarily due to increased noise. This
is reflected in both higher average DTW distances and
larger standard deviations. Upon closer inspection, we find
that DTW distances vary widely between examples. Traces
involving corrections, control keys, or keystroke rollovers
[51], tend to perform worse due to key combinations that
acts lower than our set minimum inter-keystroke interval.
We also observe that a single misprediction can degrade the
quality of subsequent interval extractions for an extended
period of time, a propagation effect that further contributes
to the variance observed in DTW distances.
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Figure 5. Native and Web Simulation Results.

5.5. Replay Fidelity

To assess the fidelity of our replay system relative to
real typing behavior, we conducted an experiment where 45
typing samples were first recorded and then replayed at both
Ix and 3x speeds, while their corresponding side-channel
traces were simultaneously captured. Applying the dynamic
filtering technique detailed in Section 4.4, we computed
cross-correlation coefficients between the traces collected
in real-time and the replayed traces, obtaining values of
0.9489, and 0.9000, respectively. These high correlations
demonstrate that the simulated keystrokes exhibit temporal
and structural characteristics highly consistent with real
keystrokes.

6. Results on Side-Channel Extracted Timings

In Section 3, we established that our fine-tuned LLM
is highly effective at reconstructing text from ground-truth
keystroke timings. Having demonstrated the fundamental
viability of our approach, we now evaluate its robustness
and performance in a practical attack scenario. This section
presents the reconstruction results when the model is applied
to the noisy keystroke intervals obtained from our end-to-
end cache side-channel attacks, as detailed in Section 4. This
analysis is crucial for understanding the real-world feasibil-
ity of cache-attacks that extract inter-keystroke timings.

6.1. Reconstruction from Cache-Extracted Data

Native Cache Traces. @ We first evaluated using traces
obtained through cache side-channels conducted from a
native environment, as described in section 4.4. The fol-
lowing results were achieved using our full curriculum
learning model, which was first fine-tuned on ground-
truth intervals before being fine-tuned on the cache-
extracted data. Table 2 presents the model’s performance
under four distinct evaluation settings: across-participant-
across-sentence (APAS), across-participant-within-sentence
(APWS), within-participant-across-sentence (WPAS), and
within-participant-within-sentence (WPWS). “Across partic-
ipant” signifies that keystroke samples from the test set
subjects were not present in the training set, while “within



TABLE 2. RECONSTRUCTION PERFORMANCE OF THE CURRICULUM LEARNING MODEL ON CACHE-EXTRACTED TIME INTERVALS

Setting ~ Top-1 Recon. Acc. T  Top-5 Recon. Acc. T Top-1 Mean Edit Dist. | Top-5 Mean Edit Dist. |
APAS 8.84% 16.94% 0.7635 0.6251
APWS 26.78% 42.92% 0.6070 0.4294
WPAS 9.25% 20.21% 0.7437 0.5928
WPWS 27.15% 41.89% 0.6077 0.4382

participant” indicates their presence. A similar logic applies
to “across sentence” and “within sentence”. These settings
allow us to measure the model’s ability to generalize across
different users and sentences.

The results reveal a clear performance hierarchy across
the settings: WPWS > APWS > WPAS > APAS. This
trend indicates that having prior knowledge of either the
user’s typing patterns or the sentence structure improves
reconstruction accuracy. Notably, the most significant per-
formance gain comes from sentence familiarity; in both
across-participant and within-participant tests, the accuracy
is more than doubled when the model has been trained
on the target sentences (e.g., APWS at 42.92% vs. APAS
at 16.94%). Knowledge of a user’s specific typing habits
provides a smaller, yet consistent, improvement. Crucially,
even in the most challenging and practically relevant APAS
setting—where the model has seen neither the user nor the
sentence before — our approach achieves a Top-1 accuracy
of 8.84% and a Top-5 accuracy of 16.94%. This demon-
strates a robust capability to reconstruct text from noisy,
real-world data in a generalized, zero-knowledge scenario.

6.1.1. Ablation Study on Training Strategies. We first
conduct an ablation study comparing it against two simpler
training baselines. Table 3 shows the Top-5 Reconstruction
Accuracy for three different models evaluated on the cache-
extracted data. The models are trained with the following
three datasets:

e Ground Truth Only: A model fine-tuned only on
clean, ground-truth time intervals (“non cache only”)
and then tested on the noisy cache data.

e Cache Only: A model fine-tuned only on the noisy,
cache-extracted time intervals.

¢ Curriculum Learning (Ours): Our proposed two-
stage model (“cache & noncache”).

TABLE 3. ABLATION STUDY: TOP-5 RECONSTRUCTION ACCURACY
(%) ON CACHE-EXTRACTED DATA

Training Strategy APAS APWS WPAS  WPWS
Ground Truth Only 11.40%  25.05% 11.01%  2539%
Cache Only 3.71% 19.41% 4.35% 19.14%
Curriculum Learning (Ours) 16.94%  42.92% 20.21% 41.89%

The results of the ablation study are unequivocal.
As shown in Table 3, the Curriculum Learning model
achieves the best performance across all four evaluation
settings, often by a significant margin. For instance, in
the most challenging APAS setting, our curriculum model
(16.94%) improves upon the Ground Truth Only model

(11.40%) by nearly 50%, and is over four times more
effective than the Cache Only model (3.71%). While the
Ground Truth Only model shows some capability, its
performance is clearly capped, indicating that knowledge
from clean data alone is insufficient to handle the distortions
of real-world cache noise. Most notably, the performance
of the Cache Only model is exceedingly poor, highlight-
ing the immense challenge of learning directly from noisy
and complex cache timing signals from scratch. Our two-
stage curriculum approach is therefore essential; by first
learning from ground-truth data, the model establishes a
strong foundation that greatly reduces the difficulty of the
subsequent learning phase on noisy data and ultimately
raises the model’s performance ceiling.

Browser Cache Traces. We also evaluate against traces
obtained from prime+probe attacks conducted from the
Chrome web browser, as described in section 4.5. The
results, presented in Table 4, show a noticeable degradation
in performance compared to the ground truth experiments.

TABLE 4. RECONSTRUCTION PERFORMANCE ON BROWSER CACHE
TRACES WITH GROUND TRUTH MODEL

Validation Split ~ Top-1 Recon. Acc. T Top-5 Recon. Acc. T

1.17% 3.13%
5.86% 9.77%

Across-Across
Within-Within

The primary reason for this performance drop is a signif-
icant distribution shift between the training and evaluation
data. The model evaluated here was trained exclusively on
the clean, ground-truth keystroke intervals from the “136M
Keystrokes” dataset. In contrast, the browser-based cache
traces are subject to considerable noise and distortion inher-
ent to the side-channel extraction process. This mismatch
means the model is tasked with making inferences on a data
distribution it has not been exposed to during training.

Addressing this challenge is left as an avenue for future
work. A promising approach would be to generate a substan-
tial dataset of realistic cache timing intervals through large-
scale replay within the browser. Subsequently, a three-stage
curriculum learning strategy could be employed to gradually
adapt the model to noisier data. This process would involve
first training the model on clean ground-truth time intervals,
then fine-tuning it on native cache time intervals, and finally
adapting it to the most complex browser-based cache time
intervals. Such a method would be expected to bridge the
distribution gap and could further enhance model robustness
and reconstruction accuracy in practical scenarios.



7. Mitigation

Traditional side-channel vulnerabilities are often ad-
dressed by replacing the vulnerable code with constant-
time implementations. However, keystroke timing side chan-
nel listens to the plethora of routines activated during a
keystroke interrupt. Making changes to all possible input
processing libraries, including different versions and com-
binations selected by various programs, would be untenable.
Our findings also show that input handling is pervasive
throughout the LLC, suggesting a multitude of leakage
sources across the various processing layers. In addition,
as keystroke handling is a time-consuming and expensive
operation, as shown by the spikes in our previous graphs,
constant-time programming would likely incur an intolera-
ble high performance overhead.

Partially mitigating the problem, previously proposed
cache side-channel defenses prevent the retrieval of accu-
rate timing data through the cache. Noise-insertion-based
approaches [122, 123, 124] obscure the memory access
patterns that distort the hit spikes of the keystrokes.

However, these defenses only eliminate cache timing
side channels instead of all other sources of leakage. Similar
to the noise-injection approach, Keydrown [30] proposes a
three-layer approach to stop a variety of attacks. The first
layer issues additional interrupts to disrupt interrupt timing-
based attacks. The second layer generates fake keystrokes
that travel through the same handling routine, aiming to
produce similar side effects as regular keystrokes. The third
layer generates additional activity on cache lines that were
activated for specific keystrokes, thereby disrupting cache
template attacks. The three layers together made it extremely
difficult for different side-channel attackers to discern in-
jected keystrokes from actual keystrokes. We believe similar,
multi-layered defense schemes are a promising direction to-
wards building robust defenses against input reconstruction
attacks.

Our work is the first study to quantify the impact of
noise on input reconstruction success rate. We discover that
input reconstruction is extremely sensitive to the accuracy
of retrieved inter-keystroke timings. Making matters worse,
detection errors propagate to consecutive detections and
are difficult to identify from examining side-channel traces.
Therefore, leveraging these properties, future defenses could
use our findings and datasets to determine the appropriate
amount of noise to inject in a principled manner.

8. Limitations

This paper focuses on reconstructing standard English
input from inter-keystroke timings, assuming a QWERTY
keyboard and standard English text. We identify two main
directions for future work.

First, with sufficiently large and diverse datasets, our
methods could be generalized to non-standard keyboard
layouts and to other languages. Language semantics greatly
constrain the space of plausible reconstructions produced

from a given set of inter-keystroke timings, and exploiting
those constraints is central to our current approach.

Second, reconstructing passwords, passphrases, and
pseudorandom strings presents a very different and more
difficult problem that will require new detection and recon-
struction techniques. Password typing often exhibits distinct
dynamics, shorter inter-keystroke intervals, peculiar gestures
such as sliding across keys, and other user-specific habits,
that reduce the effectiveness of side-channel detections and
model generalization. Moreover, an LLM can no longer
rely on language semantics to prune the search space, so
exhaustive reconstruction becomes infeasible. A more prac-
tical path is to combine timing analysis with dictionary or
probabilistic classification attacks to rank likely candidates,
acknowledging that such approaches fail for truly random or
out-of-dictionary secrets. Developing robust methods for de-
tecting atypical typing patterns, integrating auxiliary signals,
and designing scalable search strategies for high-entropy
inputs are therefore important next steps.

9. Conclusion

This paper closes a long-standing gap in security re-
search by empirically demonstrating, for the first time, that
a victim’s typed input can be fully reconstructed from inter-
keystroke timings gathered in practical, noisy environments.
By modeling the problem as a machine translation task and
fine-tuning Large Language Models with a curriculum learn-
ing strategy, our approach successfully reconstructs 34.9%
of inputs from clean timing data and, crucially, 16.9% from
timings extracted via our end-to-end cache side-channel
attacks. This achievement rests on our two main contribu-
tions: the development of a novel LLM-based reconstruction
algorithm and the creation of a massive, open-source dataset
of over 1.5 million real-world cache traces to enable robust
training. Ultimately, our work transitions keystroke timing
attacks from a theoretical possibility to a proven vulnera-
bility, providing a concrete benchmark against which future
attacks and defenses can be rigorously evaluated.
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Responses of Pre-trained Models
without Fine-tuning

Prompt: Translate the Time intervals to Keystrokes.
Time intervals: 516 222 165 ...

OLMo 1B Response: To convert time inter-
vals to keystrokes, we need to know the number of
characters or digit representations needed for each
interval. [...] Assuming each second is represented
by one character [...], a broad conversion factor
might involve: Seconds: 26 letters, Minutes: 10 dig-
its, Hours: 100 digits...

Qwen 3 8B Response: Okay, so I need to translate
these time intervals into keystrokes. [...] Maybe each
number represents the duration between each key
press. But I need more context. Wait, perhaps the
problem is similar to converting a sequence of time
intervals into a sequence of characters, like in a typ-
ing pattern. But how? [...] Maybe there’s a standard
way to convert time intervals into keystrokes. For
example, using the time intervals as ASCII values...
But the given numbers are all over the place... (cut
off due to length)

DeepSeek R1 Response: We are given a list
of time intervals. These time intervals represent the
time between consecutive keystrokes in milliseconds.
[...] However, without a mapping or context, we
must assume that the problem is about representing
the keystrokes as the time intervals themselves in
a different format? Or perhaps we are to interpret
them as pauses for a space or newline? [...] Another
common context is that in typing, long pauses (above
a threshold) might indicate a space or a new word.
However, we need a threshold.




